Bond Energy Answers

Which equation represents the bond enthalpy for the H-F bond? 1

$$\begin{array}{ll} \mathbf{A} & \mathbf{HF}_{(\mathrm{g})} \rightarrow \mathbf{H}_{(\mathrm{g})} + \mathbf{F}_{(\mathrm{g})} \\ \mathbf{C} & \mathbf{HF}_{(\mathrm{aq})} \rightarrow \mathbf{H}^+_{(\mathrm{aq})} + \mathbf{F}^-_{(\mathrm{aq})} \end{array}$$

B
$$HF_{(g)} \rightarrow \frac{1}{2}H_{2(g)} + \frac{1}{2}F_{2(g)}$$

D $HF_{(g)} \rightarrow H^+_{(g)} + F^-_{(g)}$

$$\mathrm{HF}_{(\mathrm{g})} \rightarrow \mathrm{H}^{+}_{(\mathrm{g})} + \mathrm{F}^{-}_{(\mathrm{g})}$$

Some bond energies are as follows: 2

Bond	Bond Enthalpy / kJ mol ⁻¹
C-C	347
C=C	613
С-Н	416
H-H	437

What is the change in enthalpy for the following chemical reaction?

$$\begin{array}{cccc} CH_2 = CHCH_2CH_{3(g)} &+ & H_{2(g)} \rightarrow & CH_3CH_2CH_2CH_{3(g)} \\ A & -395 \text{ kJ mol}^{-1} & B & -129 \text{ kJ mol}^{-1} & C & 129 \text{ kJ mol}^{-1} & D & 395 \text{ kJ mol}^{-1} \end{array}$$

3 In the energy cycle shown below, what is the value in kJ mol⁻¹ for the molar bond enthalpy of bromine?

The reaction between hydrogen and bromine occurs with the release of 107 kJ of energy as shown below: 4

 $H_{2(g)} \ + \ Br_{2(g)} \ \rightarrow \ 2HBr_{(g)}$

 $\Delta H = -107 \text{ kJ}$

Bond	Bond energy / kJ mol ⁻¹
H-H	436
Br-Br	193

What is the H-Br bond energy in kJ mol⁻¹?

261 B 368 С 422 D 522 А

5 Consider the following reaction: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta H^{\bullet} = ?$

Bond enthalpies (in kJ mol⁻¹) involved in the reaction are Which calculation will give the value of ΔH° ?

	N≡N	х
	H-H	у
	N-H	Z
x + 3y - 2z		

D.

6z - x + 3yC. x - 3y + 6zA. x + 3y - 6z B.

What energy changes occur when chemical bonds are formed and broken? 6

- A. Energy is absorbed when bonds are formed and when they are broken.
- B. Energy is released when bonds are formed and when they are broken.
- C. Energy is absorbed when bonds are formed and released when they are broken.
- D. Energy is released when bonds are formed and absorbed when they are broken.

Bond Energy Answers

Hydrogen cyanide can react with hydrogen to produce methylamine: 7

 $HCN_{(g)} + 2H_{2(g)} \rightarrow H_3CNH_{2(g)}$

Draw the complete dot cross structures for HCN, H₂ and H₃CNH₂ and show all the valence (a) electrons.

From a consideration of the appropriate bond energies (b) (enthalpies) below, calculate the enthalpy change, ΔH ,

for the reaction of hydrogen cyanide with hydrogen to produce methylamine. Some bond energies are: [3]

Bond	kJ mol ⁻¹
C-H	414
C-N	293
H-H	435
C=N	616
N-H	389
C≡N	879

(c) Also calculate ΔH for the reaction above using enthalpies of formation [3]

Compound	ΔH_{f} / kJ n
HCN _(g)	130.5
H ₃ CNH _{2(g)}	-28

 $= -158.5 \text{ KJmol}^{-1}$

2163 - 2313 = -150KJmol⁻¹

(d) Account for the fact that the values obtained in parts (b) and (c) are different.

Bond energy values are averages

[2]

/ kJ mol⁻¹

[3]